(c) Let $g \in P C(2 \pi)$. Show that $\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} g(t) \sin \left(n+\frac{1}{2}\right) t d t=0$.

Solution: Note that $\int_{-\pi}^{\pi} g(t) \sin \left(n+\frac{1}{2}\right) t d t=\int_{-\pi}^{\pi}\left[g(t) \cos \left(\frac{t}{2}\right)\right] \sin n t d t+\int_{-\pi}^{\pi}\left[g(t) \sin \left(\frac{t}{2}\right)\right] \cos n t d t$, and the last two terms denote the Fourier coefficients of $g(t) \cos \left(\frac{t}{2}\right)$, and $g(t) \sin \left(\frac{t}{2}\right)$, respectively. We can extend $g(t) \cos \left(\frac{t}{2}\right), g(t) \sin \left(\frac{t}{2}\right)$ periodically so that $g(t) \cos \left(\frac{t}{2}\right), g(t) \sin \left(\frac{t}{2}\right) \in P C(2 \pi)$. Bessel's inequality in (b) implies that $\frac{1}{2} a_{0}^{2}+\sum_{k=1}^{\infty}\left(a_{k}^{2}+b_{k}^{2}\right)<\infty$ holds for both $g(t) \cos \left(\frac{t}{2}\right)$, and $g(t) \sin \left(\frac{t}{2}\right)$. Hence, we have $\lim _{n \rightarrow \infty} a_{n}=0$, and $\lim _{n \rightarrow \infty} b_{n}=0$ for both functions, i.e. we have $\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi}\left[g(t) \cos \left(\frac{t}{2}\right)\right] \sin n t d t=0$, and $\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi}\left[g(t) \sin \left(\frac{t}{2}\right)\right] \cos n t d t=0$.
4. (a) Let $f \in P C(2 \pi)$ be such that $f(x)=x$ for $x \in(-\pi, \pi]$. Find the Fourier series of f.

Solution: Since f is odd, $a_{n}=0$ for all n, and its Fourier series is $2 \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sin n x}{n}$.

$$
\text { Solution: } \frac{2 \pi^{2}}{3}=\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2}=\frac{1}{\pi}\|f\|_{2}^{2}=\frac{1}{2} a_{0}^{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)=4 \sum_{n=1}^{\infty} \frac{1}{n^{2}} \text {. }
$$

5. Use Inverse Function Theorem to determine whether the system

$$
\begin{array}{clc}
u(x, y, z) & = & x+x y z \\
v(x, y, z) & = & y+x y \\
w(x, y, z) & = & z+2 x+3 z^{2}
\end{array}
$$

can be solved for x, y, z in terms of u, v, w near $p=(0,0,0)$.
Solution: Set $F(x, y, z)=(u, v, w)$. Then $D F(p)=\left[\begin{array}{ccc}u_{x} & u_{y} & u_{z} \\ v_{x} & v_{y} & v_{z} \\ w_{x} & w_{y} & w_{z}\end{array}\right](p)=\left[\begin{array}{ccc}1+y z & x z & x y \\ y & 1+x & 0 \\ 2 & 0 & 1+6 z\end{array}\right](p)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right]$ and $\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right|=1 \neq 0$. By the Inverse Function Theorem, the inverse $F^{-1}(u, v, w)$ exists near $p=(0,0,0)$, i.e. we can solve x, y, z in terms of u, v, w near $p=(0,0,0)$.
6. Let $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be given by $F(x, y, z, w)=(G(x, y, z, w), H(x, y, z, w))=\left(y^{2}+w^{2}-2 x z, y^{3}+w^{3}+x^{3}-z^{3}\right)$, and let $p=(1,-1,1,1)$.
(a) Show that we can solve $F(x, y, z, w)=(0,0)$ for (x, z) in terms of (y, w) near $(-1,1)$.

Solution: Since $D F(p)=\left[\begin{array}{llll}G_{x} & G_{y} & G_{z} & G_{w} \\ H_{x} & H_{y} & H_{z} & H_{w}\end{array}\right](p)=\left[\begin{array}{cccc}-2 & -2 & -2 & 2 \\ 3 & 3 & -3 & 3\end{array}\right]$ and $\left|\begin{array}{ll}G_{x} & G_{z} \\ H_{x} & H_{z}\end{array}\right|(p)=\left|\begin{array}{cc}-2 & -2 \\ 3 & -3\end{array}\right|=12 \neq 0$, we can write (x, z) in terms of (y, w) near $(-1,1)$ by Implicit Function Theorem.
(b) If $(x, z)=\Phi(y, w)$ is the solution in part (a), show that $D \Phi(-1,1)$ is given by the matrix

$$
-\left[\begin{array}{cc}
-2 & -2 \\
3 & -3
\end{array}\right]^{-1}\left[\begin{array}{cc}
-2 & 2 \\
3 & 3
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

Solution: The Implicit Function Theorem implies that $F(x, y, z, w)=(0,0)$ near p if and only if $(x, z)=\Phi(y, w)$ near $(-1,1)$. Hence, we have $\frac{\partial F}{\partial y}=(0,0)$, and $\frac{\partial F}{\partial w}=(0,0)$ near $(-1,1)$.
Therefore, $0=G_{x} \frac{\partial x}{\partial y}+G_{y}+G_{z} \frac{\partial z}{\partial y}$, and $0=G_{x} \frac{\partial x}{\partial w}+G_{z} \frac{\partial z}{\partial w}+G_{w}$,
which implies that $-\left[G_{y}, G_{w}\right]=\left[G_{x}, G_{z}\right]\left[\begin{array}{ll}\frac{\partial x}{\partial y} & \frac{\partial x}{\partial w} \\ \frac{\partial z}{\partial y} & \frac{\partial z}{\partial w}\end{array}\right]$.
Similarly, we have $-\left[H_{y}, H_{w}\right]=\left[H_{x}, H_{z}\right]\left[\begin{array}{ll}\frac{\partial x}{\partial y} & \frac{\partial x}{\partial w} \\ \frac{\partial z}{\partial y} & \frac{\partial z}{\partial w}\end{array}\right]$.
Thus, we have $-\left[\begin{array}{ll}G_{y} & G_{w} \\ H_{y} & H_{w}\end{array}\right]=\left[\begin{array}{ll}G_{x} & G_{z} \\ H_{x} & H_{z}\end{array}\right]\left[\begin{array}{ll}\frac{\partial x}{\partial y} & \frac{\partial x}{\partial w} \\ \frac{\partial z}{\partial y} & \frac{\partial z}{\partial w}\end{array}\right]$
or $D \Phi=\left[\begin{array}{ll}\frac{\partial x}{\partial y} & \frac{\partial x}{\partial w} \\ \frac{\partial z}{\partial y} & \frac{\partial z}{\partial w}\end{array}\right]=-\left[\begin{array}{ll}G_{x} & G_{z} \\ H_{x} & H_{z}\end{array}\right]^{-1}\left[\begin{array}{ll}G_{y} & G_{w} \\ H_{y} & H_{w}\end{array}\right]$
Hence, $D \Phi(-1,1)$ is given by the matrix

$$
-\left[\begin{array}{cc}
-2 & -2 \\
3 & -3
\end{array}\right]^{-1}\left[\begin{array}{cc}
-2 & 2 \\
3 & 3
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

7. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be continuous and be such that $\left|f_{n}(x)\right| \leq 100$ for every n and for all $x \in[0,1]$ and the derivatives $f_{n}^{\prime}(x)$ exist and are uniformly bounded on $(0,1)$.
(a) Show that there is a constant M such that $\left|f_{n}(x)-f_{n}(y)\right| \leq M|x-y|$ for any $x, y \in[0,1]$ and any $n \in \mathbb{N}$.

Solution: Let M be a constant such that $\left|f_{n}^{\prime}(x)\right| \leq M$ for all $x \in(0,1)$. By the mean value theorem, we get $\mid f_{n}(x)-$ $f_{n}(y)|\leq M| x-y \mid$ for any $x, y \in[0,1]$ and any $n \in \mathbb{N}$.
(b) Prove that f_{n} has a uniformly convergent subsequence.
[Hint : You may want to use Arzela-Ascoli Theorem to prove this.]
Solution: We apply the Arzela-Ascoli Theorem by verifying that $\left\{f_{n}\right\}$ is equicontinuous and bounded. Given ε, we can choose $\delta=\varepsilon / M$, independent of x, y, and n. Thus $\left\{f_{n}\right\}$ is equicontinuous. It is bounded because $\left\|f_{n}\right\|=$ $\sup _{x \in[0,1]}\left|f_{n}(x)\right| \leq 100$.
8. Let the functions $f_{n}:[a, b] \rightarrow \mathbb{R}$ be uniformly bounded continuous functions. Set $F_{n}(x)=\int_{a}^{x} f_{n}(t) d t$, for $x \in[a, b]$. Prove that F_{n} has a uniformly convergent subsequence.
[Hint : You may use \#7 to prove this.]

Solution: Since $\left\|F_{n}\right\| \leq\left\|f_{n}\right\|(b-a), F_{n}$ is uniformly bounded. Also, since $\left|F_{n}^{\prime}(x)\right| \leq\left\|f_{n}\right\|, F_{n}$ is equicontinuous by the preceding result. Therefore, F_{n} has a uniformly convergent subsequence by Arzela-Ascoli Theorem.

