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1. (a)6% Show that the improper integral
∫ ∞

1

cosx√
x

dx is convergent.

Solution: Since |
∫ c

1
cosxdx| ≤ 2 for any c ≥ 1, and

1√
x

is decreasing on [1,∞),
∫ ∞

1

cosx√
x

dx converges by Dirichlet

test.

(b)6% Show that
∫ ∞

0
e−x2

cos txdx converges uniformly for all t ∈ R.

Solution: Since |e−x2
cos tx| ≤ e−x2

, for x∈ [0,∞), and
∫ ∞

0
e−x2

dx =
√

π
2

< ∞,

∫ ∞

0
e−x2

cos txdx converges uniformly

by Weierstrass M-test.

2.8% Let G be defined for t > 0 by G(t) =
∫ ∞

0
e−x2

cos tx dx. Show that G(t) =
√

π
2

e
−t2

4 .

Solution: Note that G(t) = 2
∫ ∞

0
e−x2

sin txdx =
1
2

e−x2
sin tx|∞0 −

1
2

∫ ∞

0
te−x2

cos txdx = − t
2

G(t). Hence, G(t) = Ce
−t2

4 ,

and C = G(0) =
∫ ∞

0
e−x2

dx =
√

π
2

.

3. Let f ∈ PC(2π) and Tn(x) =
1
2

α0 +
n

∑
k=1

(
αk coskx+βk sinkx

)
.

(a)10% Show that

‖ f −Tn‖2
2 = ‖ f‖2

2−π

{
1
2

a2
0 +

n

∑
k=1

(
a2

k +b2
k
)
}

+π

{
1
2
(α0−a0)2 +

n

∑
k=1

[
(αk−ak)2 +(βk−bk)2]

}

where ak, bk denote the Fourier coefficients of f .

Solution: By using a direct calculation, we can obtain the above inequality.

(b)4% Show that
1
2

a2
0 +

n

∑
k=1

(
a2

k +b2
k
)≤ 1

π
‖ f‖2

2.

Solution: Let Tn = Sn( f ) in the inequality obtained in (a), i.e. the nth degree Fourier polynomial of f . Since ‖ f −
Sn( f )‖2

2 ≥ 0, we get the above Bessel’s inequality.

(c)8% Let g ∈ PC(2π). Show that lim
n→∞

∫ π

−π
g(t)sin(n+

1
2
)t dt = 0.

Solution: Note that
∫ π

−π
g(t)sin(n+

1
2
)t dt =

∫ π

−π

[
g(t)cos(

t
2
)
]

sinntdt +
∫ π

−π

[
g(t)sin(

t
2
)
]

cosntdt, and the last two terms

denote the Fourier coefficients of g(t)cos(
t
2
), and g(t)sin(

t
2
), respectively. We can extend g(t)cos(

t
2
), g(t)sin(

t
2
) period-

ically so that g(t)cos(
t
2
), g(t)sin(

t
2
) ∈ PC(2π). Bessel’s inequality in (b) implies that

1
2

a2
0 +

∞

∑
k=1

(
a2

k + b2
k
)

< ∞ holds

for both g(t)cos(
t
2
), and g(t)sin(

t
2
). Hence, we have lim

n→∞
an = 0, and lim

n→∞
bn = 0 for both functions, i.e. we have

lim
n→∞

∫ π

−π

[
g(t)cos(

t
2
)
]

sinntdt = 0, and lim
n→∞

∫ π

−π

[
g(t)sin(

t
2
)
]

cosntdt = 0.

4. (a)10% Let f ∈ PC(2π) be such that f (x) = x for x ∈ (−π,π]. Find the Fourier series of f .

Solution: Since f is odd, an = 0 for all n, and its Fourier series is 2
∞

∑
n=1

(−1)n−1 sinnx
n

.

(b)6% Use Parseval’s Equality to establish that
π2

6
=

∞

∑
n=1

1
n2 .
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Solution:
2π2

3
=

1
π

∫ π

−π
x2 =

1
π
‖ f‖2

2 =
1
2

a2
0 +

∞

∑
n=1

(
a2

n +b2
n
)

= 4
∞

∑
n=1

1
n2 .

5.6% Use Inverse Function Theorem to determine whether the system

u(x,y,z) = x+ xyz
v(x,y,z) = y+ xy
w(x,y,z) = z+2x+3z2

can be solved for x,y,z in terms of u,v,w near p = (0,0,0).

Solution: Set F(x,y,z) = (u,v,w). Then DF(p) =




ux uy uz

vx vy vz

wx wy wz


(p) =




1+ yz xz xy
y 1+ x 0
2 0 1+6z


(p) =




1 0 0
0 1 0
2 0 1




and

∣∣∣∣∣∣

1 0 0
0 1 0
2 0 1

∣∣∣∣∣∣
= 1 6= 0. By the Inverse Function Theorem, the inverse F−1(u,v,w) exists near p = (0,0,0), i.e. we can

solve x,y,z in terms of u,v,w near p = (0,0,0).

6. Let F : R4 → R2 be given by F(x,y,z,w) = (G(x,y,z,w),H(x,y,z,w)) = (y2 +w2−2xz,y3 +w3 + x3− z3),
and let p = (1,−1,1,1).

(a)6% Show that we can solve F(x,y,z,w) = (0,0) for (x,z) in terms of (y,w) near (−1,1).

Solution: Since DF(p) =
[

Gx Gy Gz Gw

Hx Hy Hz Hw

]
(p) =

[−2 −2 −2 2
3 3 −3 3

]
and

∣∣∣∣
Gx Gz

Hx Hz

∣∣∣∣(p) =
∣∣∣∣
−2 −2
3 −3

∣∣∣∣ = 12 6= 0,

we can write (x,z) in terms of (y,w) near (−1,1) by Implicit Function Theorem.

(b)8% If (x,z) = Φ(y,w) is the solution in part (a), show that DΦ(−1,1) is given by the matrix

−
[−2 −2

3 −3

]−1 [−2 2
3 3

]
=

[−1 0
0 1

]

Solution: The Implicit Function Theorem implies that F(x,y,z,w) = (0,0) near p if and only if (x,z) = Φ(y,w) near

(−1,1). Hence, we have
∂F
∂y

= (0,0), and
∂F
∂w

= (0,0) near (−1,1).

Therefore, 0 = Gx
∂x
∂y

+Gy +Gz
∂ z
∂y

, and 0 = Gx
∂x
∂w

+Gz
∂ z
∂w

+Gw,

which implies that −[Gy,Gw] = [Gx,Gz]




∂x
∂y

∂x
∂w

∂ z
∂y

∂ z
∂w


 .

Similarly, we have −[Hy,Hw] = [Hx,Hz]




∂x
∂y

∂x
∂w

∂ z
∂y

∂ z
∂w


 .

Thus, we have −
[

Gy Gw

Hy Hw

]
=

[
Gx Gz

Hx Hz

]



∂x
∂y

∂x
∂w

∂ z
∂y

∂ z
∂w




or DΦ =




∂x
∂y

∂x
∂w

∂ z
∂y

∂ z
∂w


 =−

[
Gx Gz

Hx Hz

]−1 [
Gy Gw

Hy Hw

]

Hence, DΦ(−1,1) is given by the matrix

−
[−2 −2

3 −3

]−1 [−2 2
3 3

]
=

[−1 0
0 1

]
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7. Let fn : [0,1]→ R be continuous and be such that | fn(x)| ≤ 100 for every n and for all x ∈ [0,1] and the derivatives f ′n(x)
exist and are uniformly bounded on (0,1).

(a)6% Show that there is a constant M such that | fn(x)− fn(y) | ≤M |x− y | for any x,y ∈ [0,1] and any n ∈ N.

Solution: Let M be a constant such that | f ′n(x)| ≤ M for all x ∈ (0,1). By the mean value theorem, we get | fn(x)−
fn(y) | ≤M |x− y | for any x,y ∈ [0,1] and any n ∈ N.

(b)8% Prove that fn has a uniformly convergent subsequence.
[Hint : You may want to use Arzela-Ascoli Theorem to prove this.]

Solution: We apply the Arzela-Ascoli Theorem by verifying that { fn} is equicontinuous and bounded. Given ε,

we can choose δ = ε/M, independent of x, y, and n. Thus { fn} is equicontinuous. It is bounded because ‖ fn‖ =
sup

x∈[0,1]
| fn(x)| ≤ 100.

8.8% Let the functions fn : [a,b]→ R be uniformly bounded continuous functions. Set Fn(x) =
∫ x

a
fn(t)dt, for x ∈ [a,b].

Prove that Fn has a uniformly convergent subsequence.
[Hint : You may use #7 to prove this.]

Solution: Since ‖Fn‖ ≤ ‖ fn‖(b− a), Fn is uniformly bounded. Also, since |F ′n(x)| ≤ ‖ fn‖, Fn is equicontinuous by the
preceding result. Therefore, Fn has a uniformly convergent subsequence by Arzela-Ascoli Theorem.
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