Advanced Calculus

Final Exam

Solution: Since $|\int_{1}^{c} \cos x dx| \le 2$ for any $c \ge 1$, and $\frac{1}{\sqrt{x}}$ is decreasing on $[1,\infty)$, $\int_{1}^{\infty} \frac{\cos x}{\sqrt{x}} dx$ converges by Dirichlet test.

6% (b) Show that $\int_0^\infty e^{-x^2} \cos tx \, dx$ converges uniformly for all $t \in \mathbb{R}$.

Solution: Since $|e^{-x^2} \cos tx| \le e^{-x^2}$, for $x \in [0, \infty)$, and $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2} < \infty$, $\int_0^\infty e^{-x^2} \cos tx \, dx$ converges uniformly by Weierstrass M-test.

8% 2. Let G be defined for t > 0 by $G(t) = \int_0^\infty e^{-x^2} \cos tx \, dx$. Show that $G(t) = \frac{\sqrt{\pi}}{2} e^{\frac{-t^2}{4}}$.

Solution: Note that $G(t) = 2 \int_0^\infty e^{-x^2} \sin tx \, dx = \frac{1}{2} e^{-x^2} \sin tx |_0^\infty - \frac{1}{2} \int_0^\infty t e^{-x^2} \cos tx \, dx = -\frac{t}{2} G(t)$. Hence, $G(t) = C e^{\frac{-t^2}{4}}$, and $C = G(0) = \int_0^\infty e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}$.

3. Let
$$f \in PC(2\pi)$$
 and $T_n(x) = \frac{1}{2}\alpha_0 + \sum_{k=1}^n \left(\alpha_k \cos kx + \beta_k \sin kx\right)$

(a) Show that

10%

8%

$$\|f - T_n\|_2^2 = \|f\|_2^2 - \pi \left\{ \frac{1}{2}a_0^2 + \sum_{k=1}^n \left(a_k^2 + b_k^2\right) \right\} + \pi \left\{ \frac{1}{2}(\alpha_0 - a_0)^2 + \sum_{k=1}^n \left[(\alpha_k - a_k)^2 + (\beta_k - b_k)^2\right] \right\}$$

where a_k , b_k denote the Fourier coefficients of f.

Solution: By using a direct calculation, we can obtain the above inequality.

4% (b) Show that
$$\frac{1}{2}a_0^2 + \sum_{k=1}^n \left(a_k^2 + b_k^2\right) \le \frac{1}{\pi} ||f||_2^2.$$

Solution: Let $T_n = S_n(f)$ in the inequality obtained in (*a*), i.e. the *n*th degree Fourier polynomial of *f*. Since $||f - S_n(f)||_2^2 \ge 0$, we get the above Bessel's inequality.

(c) Let $g \in PC(2\pi)$. Show that $\lim_{n \to \infty} \int_{-\pi}^{\pi} g(t) \sin(n + \frac{1}{2})t \, dt = 0$.

Solution: Note that $\int_{-\pi}^{\pi} g(t) \sin(n+\frac{1}{2})t \, dt = \int_{-\pi}^{\pi} \left[g(t) \cos(\frac{t}{2})\right] \sin nt dt + \int_{-\pi}^{\pi} \left[g(t) \sin(\frac{t}{2})\right] \cos nt dt$, and the last two terms denote the Fourier coefficients of $g(t) \cos(\frac{t}{2})$, and $g(t) \sin(\frac{t}{2})$, respectively. We can extend $g(t) \cos(\frac{t}{2})$, $g(t) \sin(\frac{t}{2})$ periodically so that $g(t) \cos(\frac{t}{2})$, $g(t) \sin(\frac{t}{2}) \in PC(2\pi)$. Bessel's inequality in (b) implies that $\frac{1}{2}a_0^2 + \sum_{k=1}^{\infty} \left(a_k^2 + b_k^2\right) < \infty$ holds for both $g(t) \cos(\frac{t}{2})$, and $g(t) \sin(\frac{t}{2})$. Hence, we have $\lim_{n \to \infty} a_n = 0$, and $\lim_{n \to \infty} b_n = 0$ for both functions, i.e. we have $\lim_{n \to \infty} \int_{-\pi}^{\pi} \left[g(t) \cos(\frac{t}{2})\right] \sin nt dt = 0$, and $\lim_{n \to \infty} \int_{-\pi}^{\pi} \left[g(t) \sin(\frac{t}{2})\right] \cos nt dt = 0$.

10% 4. (a) Let
$$f \in PC(2\pi)$$
 be such that $f(x) = x$ for $x \in (-\pi, \pi]$. Find the Fourier series of f .

Solution: Since f is odd, $a_n = 0$ for all n, and its Fourier series is $2\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sin nx}{n}$.

6% (b) Use Parseval's Equality to establish that
$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

6%

8%

Final Exam

Solution:
$$\frac{2\pi^2}{3} = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 = \frac{1}{\pi} ||f||_2^2 = \frac{1}{2}a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = 4\sum_{n=1}^{\infty} \frac{1}{n^2}.$$

6% 5. Use Inverse Function Theorem to determine whether the system

$$u(x,y,z) = x + xyz$$

$$v(x,y,z) = y + xy$$

$$w(x,y,z) = z + 2x + 3z^{2}$$

can be solved for x, y, z in terms of u, v, w near p = (0, 0, 0).

Solution: Set
$$F(x, y, z) = (u, v, w)$$
. Then $DF(p) = \begin{bmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{bmatrix} (p) = \begin{bmatrix} 1 + yz & xz & xy \\ y & 1 + x & 0 \\ 2 & 0 & 1 + 6z \end{bmatrix} (p) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$

and $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{vmatrix} = 1 \neq 0$. By the Inverse Function Theorem, the inverse $F^{-1}(u, v, w)$ exists near p = (0, 0, 0), i.e. we can solve x, y, z in terms of u, v, w near p = (0, 0, 0).

- 6. Let $F : \mathbb{R}^4 \to \mathbb{R}^2$ be given by $F(x, y, z, w) = (G(x, y, z, w), H(x, y, z, w)) = (y^2 + w^2 2xz, y^3 + w^3 + x^3 z^3)$, and let p = (1, -1, 1, 1).
- (a) Show that we can solve F(x, y, z, w) = (0, 0) for (x, z) in terms of (y, w) near (-1, 1).

Solution: Since $DF(p) = \begin{bmatrix} G_x & G_y & G_z & G_w \\ H_x & H_y & H_z & H_w \end{bmatrix} (p) = \begin{bmatrix} -2 & -2 & -2 & 2 \\ 3 & 3 & -3 & 3 \end{bmatrix}$ and $\begin{vmatrix} G_x & G_z \\ H_x & H_z \end{vmatrix} (p) = \begin{vmatrix} -2 & -2 \\ 3 & -3 \end{vmatrix} = 12 \neq 0$, we can write (x, z) in terms of (y, w) near (-1, 1) by Implicit Function Theorem.

(b) If $(x,z) = \Phi(y,w)$ is the solution in part (a), show that $D\Phi(-1,1)$ is given by the matrix

$$-\begin{bmatrix} -2 & -2 \\ 3 & -3 \end{bmatrix}^{-1} \begin{bmatrix} -2 & 2 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Solution: The Implicit Function Theorem implies that F(x,y,z,w) = (0,0) near p if and only if $(x,z) = \Phi(y,w)$ near (-1,1). Hence, we have $\frac{\partial F}{\partial y} = (0,0)$, and $\frac{\partial F}{\partial w} = (0,0)$ near (-1,1). Therefore, $0 = G_x \frac{\partial x}{\partial y} + G_y + G_z \frac{\partial z}{\partial y}$, and $0 = G_x \frac{\partial x}{\partial w} + G_z \frac{\partial z}{\partial w} + G_w$, which implies that $-[G_y, G_w] = [G_x, G_z] \begin{bmatrix} \frac{\partial x}{\partial y} & \frac{\partial x}{\partial w} \\ \frac{\partial z}{\partial y} & \frac{\partial z}{\partial w} \end{bmatrix}$. Similarly, we have $-[H_y, H_w] = [H_x, H_z] \begin{bmatrix} \frac{\partial x}{\partial y} & \frac{\partial x}{\partial w} \\ \frac{\partial z}{\partial y} & \frac{\partial z}{\partial w} \end{bmatrix}$. Thus, we have $-\begin{bmatrix} G_y & G_w \\ H_y & H_w \end{bmatrix} = \begin{bmatrix} G_x & G_z \\ H_x & H_z \end{bmatrix} \begin{bmatrix} \frac{\partial x}{\partial y} & \frac{\partial x}{\partial w} \\ \frac{\partial z}{\partial y} & \frac{\partial z}{\partial w} \end{bmatrix}$. or $D\Phi = \begin{bmatrix} \frac{\partial x}{\partial y} & \frac{\partial x}{\partial w} \\ \frac{\partial z}{\partial y} & \frac{\partial z}{\partial w} \end{bmatrix} = -\begin{bmatrix} G_x & G_z \\ H_x & H_z \end{bmatrix}^{-1} \begin{bmatrix} G_y & G_w \\ H_y & H_w \end{bmatrix}$ Hence, $D\Phi(-1,1)$ is given by the matrix $-\begin{bmatrix} -2 & -2 \\ 3 & -3 \end{bmatrix}^{-1} \begin{bmatrix} -2 & 2 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$

Page 2

6%

- 7. Let $f_n : [0,1] \to \mathbb{R}$ be continuous and be such that $|f_n(x)| \le 100$ for every *n* and for all $x \in [0,1]$ and the derivatives $f'_n(x)$ exist and are uniformly bounded on (0,1).
- (a) Show that there is a constant *M* such that $|f_n(x) f_n(y)| \le M |x y|$ for any $x, y \in [0, 1]$ and any $n \in \mathbb{N}$.

Solution: Let *M* be a constant such that $|f'_n(x)| \le M$ for all $x \in (0,1)$. By the mean value theorem, we get $|f_n(x) - f_n(y)| \le M |x-y|$ for any $x, y \in [0,1]$ and any $n \in \mathbb{N}$.

(b) Prove that *f_n* has a uniformly convergent subsequence.[Hint : You may want to use Arzela-Ascoli Theorem to prove this.]

Solution: We apply the Arzela-Ascoli Theorem by verifying that $\{f_n\}$ is equicontinuous and bounded. Given ε , we can choose $\delta = \varepsilon/M$, independent of x, y, and n. Thus $\{f_n\}$ is equicontinuous. It is bounded because $||f_n|| = \sup_{x \in [0,1]} |f_n(x)| \le 100$.

8% 8. Let the functions $f_n : [a,b] \to \mathbb{R}$ be uniformly bounded continuous functions. Set $F_n(x) = \int_a^x f_n(t) dt$, for $x \in [a,b]$. Prove that F_n has a uniformly convergent subsequence. [Hint : You may use #7 to prove this.]

Solution: Since $||F_n|| \le ||f_n||(b-a)$, F_n is uniformly bounded. Also, since $|F'_n(x)| \le ||f_n||$, F_n is equicontinuous by the preceding result. Therefore, F_n has a uniformly convergent subsequence by Arzela-Ascoli Theorem.