Advanced Calculus Final Exam June 25, 2007

6% | 1. (a) Show that the improper integral / %dx is convergent.
1 x

© 1 =
Solution: Since | / cosxdx| <2 for any ¢ > 1, and —= is decreasing on [1,e0), / O dx converges by Dirichlet
1 VX RV
test.
6% (b) Show that / e*)62 costxdx converges uniformly for all # € R.
0
. . 2 2 L R .
Solution: Since [e " costx| < e, forx € [0,00), and / =5 < oo, / e " costxdx converges uniformly
Jo

by Weierstrass M-test.

- 2
2. Let G be defined forz > 0 by G(r) = / ¢ costx dx. Show that G(t) = geT.
0

2=}

' 1 _» 1 /e t
Solution: Note that G(r) = 2 e sintxdx = ée*" sintx|y — E/ te™ costxdx = _EG(t)' Hence, G(t) = Ce 4,
0

o\

N\§

andC:G(O):/ 2 dx =
0

3. Let f € PC(27) and T;,(x

(a) Show that
If—Tn||§=||f||%—ﬂ{-ao+Z ak+bk} { (00— a0)? Z o —ar)? (ﬁk_bk)z]}

where ay, by denote the Fourier coefficients of f.

n
Z oy coskx + Py sinkx).

l\)l'—‘

Solution: By using a direct calculation, we can obtain the above inequality.
4% (b) Show that 1a3 + Z (a; +b7) < l||f||§.
2 = -n

Solution: Let 7, = S,,(f) in the inequality obtained in (a), i.e. the nth degree Fourier polynomial of f. Since || f —
Sa(f)|13 > 0, we get the above Bessel’s inequality.

V1

8% (c) Let g € PC(2m). Show that lim [ g(7)sin(n+ = )tdt 0.
n—oo | _ o
Z 1 & t Z t
Solution: Note that/ g(t)sin(n+ E)td[ :/ [8(1) COS(E)] sinntrdt + [8(1) sin(i)} cosntdt, and the last two terms
- - -7

), 8(t) Sin(%) period-

N~

t
denote the Fourier coefficients of g(r) cos( 5 ), and g(7) sin( 5 ), respectively. We can extend g(#) cos(

oo

t 1
ically so that g(t)cos(i)7 g(t)sm(2) € PC(2m). Bessel’s inequality in () implies that an + Z (a,% +b,%) < oo holds
=1

t t
for both g(t)cos(i), and g(t)sin(i). Hence, we have lim a, = 0, and lim b, = 0 for both functions, i.e. we have

n—oo n—oo

T

3
lim [g(2) cos(%)] sinntdt = 0, and lim [g(2) sin(%)] cosntdt =

n—oo |_m n—oo |_ o

4. (a) Let f € PC(27) be such that f(x) = x for x € (—n, ]. Find the Fourier series of f.

=)

Solution: Since f is odd, a,, = 0 for all n, and its Fourier series is 2 Z
n=1

(—1)" !sinnx
. .

2 oo
T 1

6% (b) Use Parseval’s Equality to establish that — = Z -

6 =n
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N < U C P P L - |
Solution: T = E/_ﬂx = ;”f”z = an‘F’; (an+bn) = 4; E
6% | 5. Use Inverse Function Theorem to determine whether the system
u(x,y,z7) = x+xyz
viryz) = y+xy
w(x,y,z) = z+2x+32
can be solved for x,y,z in terms of u,v,w near p = (0,0,0).
Uy Uy U 14+yz xz Xy 1 0 0
Solution: Set F(x,y,z) = (u,v,w). Then DF (p) = [vx vy v, |(p)=]| I+x 0 |(p)=10 1 0
Wy Wy W 2 0 1+6z 2 0 1
1 00
and [0 1 0| =1+ 0. By the Inverse Function Theorem, the inverse F ' (u,v,w) exists near p = (0,0,0), i.e. we can
2 0 1

solve x,y,z in terms of u,v,w near p = (0,0,0).

6. Let F : R* — R? be given by F(x,y,z,w) = (G(x,y,z,w),H(x,y,z,w)) = (yz—&—w2 — 27,y +w +x —z3),
and let p = (1,—1,1,1).

6% (a) Show that we can solve F(x,y,z,w) = (0,0) for (x,z) in terms of (y,w) near (—1,1).

G, G, G; G, =2 =2 =2 2 G, G =2 =2
Solution: Since DF (p)=| * ) Y = d|* ¢ = =12#0,
olution: Since DF (p) [Hx Hy H. Hw] () { 3 3 -3 3} and |y m|P) =5 5 =270
we can write (x,z) in terms of (y,w) near (—1, 1) by Implicit Function Theorem.
8% (b) If (x,z) = ®P(y,w) is the solution in part (a), show that D®(—1, 1) is given by the matrix

IR

Solution: The Implicit Function Theorem implies that F (x,y,z,w) = (0,0) near p if and only if (x,z) = ®(y,w) near

F F
(—1,1). Hence, we have 3)} = (0,0), and 37 = (0,0) near (—1,1).
Therefore, 0 = Gxﬁ +G,+ GZ%_, and 0 = G_xg 4 Gzi +G,,
dy dy dw ow
_@ ﬁ_
which implies that —[Gy,G,,| = [Gx, G] ‘3)27 %VZV
Loy ow
_@ ﬁ_
Similarly, we have —[H,, H,,] = [Hy, H] 332 %VZV
Ldy owl
Crox o
Thus, we have — Gy Guw| _ |Gx Gz| |9y ow
P AN
dy dw
o o |
or DD = 8y aw — Gy Gz Gy Gy,
9z 9z H, H.| |H, H,
dy Jdw

Hence, D®(—1, 1) is given by the matrix
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7. Let f, : [0,1] — R be continuous and be such that |f,,(x)| < 100 for every n and for all x € [0, 1] and the derivatives f; (x)
exist and are uniformly bounded on (0, 1).

6% (a) Show that there is a constant M such that | f,(x) — f,(y)| < M|x—y| for any x,y € [0,1] and any n € N.

Solution: Let M be a constant such that | £ (x)| < M for all x € (0,1). By the mean value theorem, we get | f;(x) —
fa)| <M|x—y]| forany x,y € [0,1] and any n € N.

8% (b) Prove that f, has a uniformly convergent subsequence.
[Hint : You may want to use Arzela-Ascoli Theorem to prove this.]

Solution: We apply the Arzela-Ascoli Theorem by verifying that {f,} is equicontinuous and bounded. Given &,
we can choose 6 = £/M, independent of x, y, and n. Thus {f,} is equicontinuous. It is bounded because || f,|| =

sup |fn(x)| < 100.
x€[0,1]

X
8% | 8. Let the functions f; : [a,b] — R be uniformly bounded continuous functions. Set F;,(x) = / fa(t)dt, for x € [a,b].
a

Prove that F,, has a uniformly convergent subsequence.
[Hint : You may use #7 to prove this.]

Solution: Since ||F,|| < ||f,]|(b — a), F, is uniformly bounded. Also, since |F,(x)| < ||f,||, F is equicontinuous by the
preceding result. Therefore, F;, has a uniformly convergent subsequence by Arzela-Ascoli Theorem.
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